La inteligencia artificial (IA) para la calificación semiautomatizada de la calidad de la evidencia en revisiones sistemáticas (GRADE)

La evaluación de la calidad de la evidencia en revisiones sistemáticas (RS) es esencial para la toma de decisiones. Aunque el sistema GRADE (Grading of Recommendations Assessment, Development and Evaluation) ofrece un enfoque consolidado para calificar el nivel de evidencia, su aplicación es compleja y requiere mucho tiempo. La inteligencia artificial (IA) puede utilizarse para superar estas barreras.

En este contexto, acaba de publicarse un estudio experimental analítico que busca desarrollar y evaluar la herramienta URSE basada en IA para la semiautomatización de una adaptación del sistema de clasificación GRADE, determinando niveles de evidencia en RS con metaanálisis compilados de ensayos clínicos aleatorizados (1).

Las conclusiones de este estudio revelan que el rendimiento del sistema GRADE automatizado URSE es insatisfactorio en comparación con los evaluadores humanos. Este resultado indica que el objetivo de utilizar la IA para GRADE no se ha alcanzado.

Las limitaciones del sistema GRADE automatizado URSE reforzaron la tesis de que las herramientas potenciadas por IA deben utilizarse como una ayuda para el trabajo humano y no como un sustituto del mismo. En este contexto, el  sistema GRADE automatizado URSE puede utilizarse como segundo o tercer revisor, lo que mejora la objetividad de las dimensiones GRADE, reduce el tiempo de trabajo y resuelve discrepancias. 

Los resultados demuestran el uso potencial de la IA en la evaluación de la calidad de la evidencia. Sin embargo, considerando el énfasis del enfoque GRADE en la subjetividad y la comprensión del contexto de producción de evidencia, la automatización completa del proceso de clasificación no es oportuna. No obstante, la combinación del sistema GRADE automatizado URSE con la evaluación humana o la integración de esta herramienta en otras plataformas representa direcciones interesantes para el futuro.

En el siguiente enlace encontrarás un resumen del artículo:
https://hacia-la-automatizacion--1z75d14.gamma.site/

BIBLIOGRAFÍA

  1. Oliveira dos Santos A, Belo VS, Mota Machado T, et al. Toward automating GRADE classification: a proof-of-concept evaluation of an artificial intelligence-based tool for semiautomated evidence quality rating in systematic reviews. BMJ Evidence-Based Medicine. 2025. doi: 10.1136/bmjebm-2024-113123

Deja un comentario